
A proof of the Schwartz kernel theorem

Ethan Y. Jaffe

We show the following:

Theorem 1.1. Let X, Y be smooth manifolds. For every A : C∞0 (Y ) → D′(X) continuous
and linear, there exists a unique K ∈ D′(X × Y ) such that

〈Au, v〉 = 〈K, u⊗ v〉.

By continuity, we mean sequential continuity, i.e. that if ϕj → ϕ in C∞0 (Y ), then Aϕj → Aϕ
weakly in D′(X)

Proof. Uniqueness is obvious since tensor products C∞c (Y )⊗C∞c (X) are dense in C∞c (Y ×X)
(which can be seen for the case that Y and X are cubes by using Fourier series, and then
employing a partition of unity which lives in the tensor product).

Now for existence.
Step 1: We first prove an analogous theorem for S(Rd), where all the work will be

done. Explicitly we prove the same theorem, except with S(Rm) S ′(Rn) as the domain and
codomain of A, respectively, first. Set 〈x〉 = (1 + |x|2)1/2. We define 〈x〉sH t(Rd) to be the
space of all distributions u of the form

u = 〈x〉sv

for v ∈ H t(Rd), with a norm ||u||〈x〉sHt(Rd) = ||v||Ht(Rd). We have that

S(Rd) =
⋂
k∈Z

〈x〉−kHk(Rd)

and
S ′(Rd) =

⋃
k∈Z

〈x〉kH−k(Rd),

moreover the intersection (resp. union) is decreasing (resp. increasing), and the inclusions
maps are continuous. Furthermore, ϕj → ϕ in S(Rd) iff ϕj → ϕ in all spaces 〈x〉−kHk(Rd)
and uj → u in S ′(Rd) iff uj → u in some space 〈x〉kH−k(Rd). See the Appendix for details.

Using this, we show that there is some k, ` so that A extends to a bounded linear map

A : 〈x〉−kHk(Rm)→ 〈x〉`H−`(Rn).

The major idea in this note of passing to a δ function, was taken from notes written by Richard Melrose
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Proof. Notice that there is some constant Ck,`,d such that whenever k < `,

|| · ||〈x〉kHk(Rd) ≤ Ck,`,d|| · ||〈x〉−`H`(Rd).

Dividing by a constant, we may thus inductively renormalize the norms || · ||〈x〉kH−k(Rd) for
Z 3 k ≥ 0 so that C−k−1,−k,d = 1.

Suppose A did not extend to a continuous map. Then taking k = `, for each ` fixed there
would be ε` > 0 and a sequence ϕj,` → 0 in 〈x〉−`H`(Rm) as j →∞ such that

||Aϕj,`||〈x〉`H−`(Rn) ≥ ε`.

Rescaling ϕj,`, we may assume that ε` = 1 for all `. Passing to a subsequence, we may also
assume that ||ϕj,`||〈x〉−`H` ≤ 2−j. Set ψj = ϕj,j. Then for all ` and j ≥ `,

||ϕj,j||〈x〉−`H`(Rm) ≤ ||ϕj,j||〈x〉−jHj(Rm) ≤ 2−j,

and so ψj → 0 in S(Rm).
Thus Aψj → 0 in 〈x〉kH−k(Rn) for some k. Making k smaller, we may assume that

k ≤ 0. But
||Aψj||〈x〉kH−k(Rd) ≥ ||Aψj||〈x〉jH−j(Rd) ≥ 1,

at least for large enough j, since we are assuming that C−j,−k,m = 1. This is of course a
contradiction.

Multiplication by 〈x〉s is an isomorphism of S for any s, and hence 〈D〉s is, too, and
hence both are also of S ′ (〈D〉 is defined by multiply the Fourier transform by 〈ξ〉 and
then taking the inverse transform). Using the above statement, we see that in particular
there is an operator B which is a composition of A with the above maps such that B :
H−m(Rm)→ Hn(Rn). Now δy ∈ H−m(Rm), and hence, B(δy) ∈ Hn(Rn). Moreover, δ· is a
bounded continuous function into H−m(Rm). In particular, the function L(x, y) = B(δy)(x)
is well-defined and a bounded continuous function by Sobolev embedding, and so defines a
distribution on S(Rn+m) by integrating. We next verify that

∫
L(x, y)ϕ(y) dy = B(ϕ)(x),

i.e. L is the kernel of B. L makes sense to evaluate pointwise in x by Sobolev embedding,
and the integral makes sense since L(x, ·) is bounded and continuous. We write the integral
as a limit of Riemann sums which converge at least pointwise in x:∫

L(x, y)ϕ(y) dy = lim
ε→0

εm
∑

ν∈(εZ)m, |ν|≤ε−1

B(δν)(x)ϕ(ν)

= lim
ε→0

εm
∑

B(ϕ(ν)δν)(x)

= lim
ε→0

B
(
εm
∑

ϕ(ν)δν

)
(x).

Now, the argument of B converges in H−m(Rm) to ϕ. Indeed, the Fourier transform of
the arugment is

εm
∑
ν

e−iνξϕ(ν),
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which is a Riemann sum for the defining integral of ϕ̂(ξ), which certainly converges to ϕ̂ in
the appropriate weighted L2 space by dominated convergence. Indeed,∣∣∣∣∣εm∑

ν

e−iνξϕ(ν)

∣∣∣∣∣ . εm
∑
ε

〈ν〉−N ∼
∫
Rm

〈x〉−N . 1,

and so ∣∣∣∣∣εm∑
ν

e−iνξϕ(ν)− ϕ(ξ)

∣∣∣∣∣
2

〈ξ〉−m . 〈ξ〉−m

is integrable. Thus,
εm
∑

ϕ(ν)δν → ϕ

in H−m(Rd). Since B is continuous from H−m(Rm) to L∞(Rn), we deduce from the above
that ∫

L(x, y)ϕ(y) dy = lim
ε→0

B
(
εm
∑

ϕ(ν)δν

)
(x) = B(ϕ)(x),

which is what we wanted to show.
Finally, we deduce that for approrpriate ik, k = 1, 2, 3, 4,

〈Au, v〉 = 〈〈Dx〉i1〈x〉i2B〈y〉i3〈Dy〉i4 , v〉
= 〈L, 〈y〉i3〈Dy〉i4u⊗ 〈Dx〉i1〈x〉i2v〉,

and so we may define the kernel K to A by

〈K,ϕ〉 = 〈L, 〈y〉i3〈Dy〉i4〈Dx〉i1〈x〉i2ϕ〉,

which certainly defined a Schwartz-distribution.
Step 2: Now, returning to the original question. Suppose Y is an open subset of Rm

and X is an open subset of Rn, and let Yj, Xj denote compact exhaustions of Y and X,
respectively Then we may define maps Aj : S(Rm)→ S ′(Rn) by

〈Aju, v〉 = 〈Aηju, χjv〉,

ηj, χj are cutoffs of Yj and Xj, respectively. Notice that the associated kernels Kj of Aj by
uniqueness must extend one another. The result follows. Explicitly, if ϕ ∈ C∞c (Y ×X), we
may define

〈K,ϕ〉 = 〈Kj, (ηj ⊗ χj)ϕ〉

if suppϕ ∈ Yj ×Xj. This is well-defined since if k > j, then

〈Kk, (ηk ⊗ χk)ϕ〉 = 〈Kk, (ηj ⊗ χj)ϕ〉,
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but Kk and Kj must be the same when acting on functions in C∞c (Yj ×Xj), by uniqueness
(if ϕ = ϕ1 ⊗ ϕ2, then both must be 〈Aϕ1, ϕ2〉). K is the kernel for A since if u ∈ C∞c (Y ),
v ∈ C∞c (X), then for large enough j,

〈K, u⊗ v〉 = 〈Kj, (ηju)⊗ (χjv)〉 = 〈Ajηju, χjv〉 = 〈Aη2ju, χ2
jv〉 = 〈Au, v〉.

Lastly, we need to verify that K is continuous. But this is obvious since ϕj → ϕ means in
particular that for large enough j, the supports of the ϕj and ϕ are uniformly compactly
supported.

Step 3: On a manifold, we simply need to use partitions of unity. Suppose ϕj is a
partition of unity subordinate to a collection of charts Yj on Y , and ψj is subordinate to a
collection of charts Xj of X. Set Ai,ju = ψiA(ϕju). This then has kernel Ki,j ∈ D′(Yj×Xi).
Let ϕ′j be supported in Yj and 1 on the support of ϕj, and similarly for ψ′j. Then K =∑

(ψ′i ⊗ ϕ′j)Ki,j is a well-defined distribution (even if the sum is infinite, since it acts on
compactly supported densities), and is the distribution kernel for A. Indeed,

〈K, u⊗ v〉 =
∑
〈Ki,j, (ϕ

′
ju)⊗ (ψ′iv)〉

=
∑
〈Ai,j(ϕ′ju), ψ′iv〉

=
∑
〈A(ϕ′jϕju), ψ′iψiv〉 =

∑
〈A(ϕju), ψiv〉

= 〈Au, v〉.

Here we have supressed the importance that D′(M) is the dual to the compactly sup-
ported densities of a manifold on M . The implicit use of this was in the following: if U is
a subset of M in the image of a coordinate patch with domain V , we identified D′(U) and
D′(V ) without further comment; to be rigorous, one must note the obvious correspondence
between a smooth function f on V , and the “natural” density fdx.

A. Appendix

The purpose of this appendix is to (at least sketch) the proof of the following.

Theorem A.1. If k ≥ j are integers, then we have a continuous inclusion

〈x〉−jHj(Rd) ⊆ 〈x〉−kHk(Rd).

Moreoever, the following are true:

(i) S(Rd) =
⋂
k∈Z〈x〉−kHk(Rd)

(ii) S ′(Rd) =
⋃
k∈Z〈x〉kH−k(Rd)
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Furthermore, if ϕn → ϕ in S(Rd), then for all k ϕn → ϕ in the topology of 〈x〉−kHk(Rd).
Similarly, if un → u weakly in S ′(Rd), then there is some k for which un → u in the topology
of 〈x〉kH−k(Rd).

Remark A.2. Although the Theorem is true if we use real k instead of integer k, the technical
estimates, which are implicit throughout the proof, are easier to prove for integer-indexed
Sobolev spaces, since these have a characterization not using the Fourier transform, i.e. in
terms of derivatives being in L2 for k ≥ 0, and their duals for k ≤ 0. The required technical
theorem to extend to arbitrary Sobolev spaces is the Sobolev multiplication lemma. In the
present case, one can instead simply use the product rule.

Remark A.3. The version of this Theorem for compact manifolds is much simpler to prove,
since there are no weights on the Sobolev spaces. It is possible to argue the Schwartz kernel
theorem for compact manifolds directly, using the techniques in this note, without having to
go through as many technical details.

Proof. Suppose u ∈ 〈x〉−jHj(Rn), i.e. u = 〈x〉−jv, where v ∈ Hj(Rd). Then if k ≥ j are
integers, then

u = 〈x〉−k
(
〈x〉−(j−k)v

)
,

and v ∈ Hk(Rd). Now 〈x〉−(j+k) is smooth and bounded together with all its derivatives.
It follows that multiplication by 〈x〉−(j+k) is a bounded operator on H`(Rd) for ` ≥ 0, and
hence for all ` ∈ Z by duality. In particular, u ∈ 〈x〉−kHk(Rd) with the estimate

||u||〈x〉−kHk(Rd) = ||〈x〉−(j−k)v||Hk(Rd) ≤ C||v||Hk(Rd) ≤ C||v||Hj(Rd) = C||u||〈x〉−jHj(Rd).

This proves the first statement. Observe that the proof actually shos that if k ≥ j and
k′ ≥ j′ then we have the continuous inclusion

〈x〉−j′Hj(Rd) ⊆ 〈x〉−k′Hk(Rd).

For the second, we define the Schwartz seminorms

||u||j,j′ = sup
x∈Rd

|〈x〉j′∂ju|.

Here, ∂ju is interepted as a vector of all partials of order j, and | · | as the sup norm. Now
by Sobolev embedding,

sup
j′≤j−d−1

|∂j′〈x〉ju| ≤ C||u||〈x〉−jHj(Rd).

It is not hard to see (using induction, for instance), that

sup
j≤N, j′≤j−d−a

||u||j,j′ ≤ C

(
sup

j≤N,j′≤j−d−1
|∂j′〈x〉ju|

)
.
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The former is a family of norms on the Schwartz space. The latter is bounded by

C

(
sup
j≤N
||u||〈x〉−jHj(Rd)

)
≤ C||u||〈x〉−NHN (Rd),

since the norm for j = N controls the others. Since we obviously have a reverse inequality
controlling the norms on 〈x〉−NHN(Rd) in terms of the Schwartz norms, we deduce that the
families are equivalent, and so (i) of the Theorem follows.

For the converse, we take duals to see that

S ′(Rd) =
⋃
k∈Z

〈x〉kH−k(Rd).

Now for the convergence. S(Rd) is a Fréchet space, and so by the Banach-Steinhaus
theorem, if un → u weakly, the family un is equicontinuous. By (i) and the fact that the
norms are increasing) we know that this means that there is some j for which

|〈un, ϕ〉| . ‖ϕ‖〈x〉−jHj(Rd) .

Since S(Rd) is certainly dense in 〈x〉kH`(Rd) for any k, `, this means that

‖un‖〈x〉jH−j(Rd) . 1.

Next we show that there is some j such that every subsequence has a further subsequence
which converges to u in 〈x〉j′H−j′(Rn), which is sufficient. We use the following lemma.

Lemma A.4. Suppose vi ∈ 〈x〉k
′
Hk(Rd) are bounded. Suppose ` < k. Then there is a

subsequence vn`
such that vim is convergent in 〈x〉`′H`(Rd), for some `′ ≥ k′.

Given the lemma, we see that every subsequence has a further subsequence converging
to something in some space 〈x〉j′H−j′(Rd). Since u is the weak limit of the subsequence, it
must be the limit in 〈x〉j′H−j′(Rd), too (just test against S(Rn)). Since every subsequence
has a further subsequence converging to the same limit in the same space, the entire sequence
converges as well.

Proof of Lemma. The idea is to cutoff and use Reillich-Kondrashov to obtain convergence
on each cutoff. Then the difference between `′ and k′ will allow us to control the left-over
tails.

Let ϕn be smooth cutoffs of B(0, n) in Rd with support in B(0, n+ 1/2). Then for each
n fixed, the sequence ϕnvi is uniformly bounded in Hk(Rd), and so, by Reillich-Kondrashov
compactness, has a subsequence converging to some limit wn in H`(Rd). Taking a diagonal
subsequence, vim we may assume that for each n fixed ϕnvim → wn. Now ϕnwp = wn
whenever p > n, since ϕnϕp = ϕn. Let w ∈ H`

loc(R
d) be the distribution defined by ϕnw =

wn. Then by construction vim → w in H`
loc(R

d). We will show that in fact w ∈ 〈x〉`′H`(Rd)
for large enough `′, and furthermore than vim converges to it.
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We first observe that
〈x〉−`′vkm = 〈x〉k′−`′〈x〉−k′vim .

Set e = `′ − k′. Observe that of e is sufficiently large depending on d, s then

||(1− ϕn)〈x〉−e〈x〉−k
′
vim||H`(Rd) . ||〈x〉−k

′
vmn||H`(Rd)||||(1− ϕn)〈x〉−e||Hq(Rd), (A.1)

The first factor is uniformly bounded by assumption. The second factor goes to 0 as
n→∞. We thus have that for `′ > k′ large enough

||vim − vim′ ||〈x〉`′H`(Rd) ≤ ||(1− ϕn)〈x〉−e〈x〉−k
′
(vim − vim′ )||H`(Rd) + ||〈x〉−`

′
ϕn(vim − vim′ )||H`(Rd).

We have determined that the first term can be made arbitrarily small for n large. After
this, we notice that 〈x〉−`′ϕm ∈ C∞c (Rd) and 〈x〉−`′ϕpϕn = 〈x〉−`′ϕn for p > n. Since
multiplication by a function in C∞c (Rd) is continuous on H`(Rd), and ϕnvim is Cauchy in
H`(Rd) by assumption, the second term can be made arbtrarily small if m,m′ is sufficiently
large. Hence vim is Cauchy and thus convergent, and must converge to w.

With the Lemma proved, so is the Theorem.
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