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Consider n vectors x1, . . . , xn ∈ RN . One often wishes to find the best lower-dimensional
representation of the vectors x1, . . . , xn, i.e. to find the closest k-dimensional affine hyper-
plane (k < N) to the vectors. In other words, one wishes to minimize, over k-dimensional
hyperplanes (through the origin) and offsets b ∈ RN the quantity

n∑
i=1

dist(xi, V + b)2 =
n∑

i=1

‖(1− ΠV )(xi − b)‖2, (1)

where ΠV denotes the orthogonal projection onto the subspace V .
Principal component analysis (PCA) provides an exact answer to this problem in terms

of the eigenvectors of the sample covariance matrix1 Σ = XXT , where X is the matrix
whose columns are the vectors xi− x̂, x̂ denoting the mean x̂ = x1+···+xn

n
. Since Σ is positive

semi-definite, it has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0, and corresponding orthonormal
eigenvectors v1, . . . , vN .

Theorem 1 (PCA). Quantity (1) is minimized if and only if V is the span of k orthonormal
eigenvectors of Σ corresponding to the k largest eigenvalues of Σ, and b − x̂ ∈ V . In this
case, the minimum distance is

∑n
i=1‖xi‖2 −

(∑k
j=1 λj

)
.

Remark 2. Notice that this is an if and only if statement. It asserts how to find a pair (V, b)
minimizing (1) and also characterizes the form of any minimizing pair.

Remark 3. If k ≥ 1, then the offset b is only unique up to an element of V . This is to
be expected, since there are many pairs (V, b) defining the same affine hyperplane. The
hyperplane V also need not be unique, because the multiplicity of the eigenvalues λi is not
necessarily 1.

Remark 4. Another way of interpreting the theorem is that PCA finds the directions of
maximum variance. The PCA procedure may thus be explained as follows: demean the
data, and then extract a set of k orthogonal directions in which the variance of the data (i.e.
the vectors x1, . . . , xn) is maximal.

We will prove the theorem in three steps. In the first, we assert that the minimum is
actually realized at a pair (V, b), and that for this pair b− x̂ ∈ V . This allows us to reduce

1Really only the sample covariance matrix up to a constant factor depending on n; this does not affect
any of the statements made below.
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the case that the mean x̂ = 0 and minimizing pairs (V, b) where b = 0. In the second step
we relate this minimization problem to a maximization problem involving Σ in a purely
linear-algebraic fashion. In the third step, we solve this maximization problem.

Lemma 5. The minimum to (1) is attained a pair (V, b). Furthermore, if (V, b) is any
minimal pair, then b− x̂ ∈ V .

Proof. Let us start with the proof of the second statement. Notice that (1 − ΠV )x̂ is the
mean of (1− ΠV )x1, . . . , (1− ΠV )xn, and so

n∑
i=1

‖(1− ΠV )xi − (1− ΠV )x̂‖2 ≤
n∑

i=1

‖(1− ΠV )xi − c‖2, (2)

for any c ∈ RN , with equality holding if and only if c = (1−ΠV )x̂. In particular this is true
for c = (1−ΠV )b, which means that if (V, b) is a minimiaing pair, then (1−ΠV )(b− x̂) = 0,
or b− x̂ ∈ V .

Let us now prove that the minimum is attained. Let (Vj, bj) be a sequence of ordered
pairs for which

n∑
i=1

‖(1− ΠVj
)(xi − bj)‖2 → inf

(V,b)

n∑
i=1

‖(1− ΠV )(xi − b)‖2.

Using (2), we may assume that (1 − ΠVj
)bj = (1 − ΠVj

)x̂, or just that bj = x̂. Passing to
a subsequence Vj` , we may assume that there exists a hyperplane V for which ΠVj`

→ ΠV .
Indeed, letting (vj,1, . . . , vj,k) be an orthonormal basis of Vj, we may extract a convergent
subsequence (vj`,1, . . . , vj`,k) → (v1, . . . , vk), an orthornomal basis of a hyperplane V . It is
easy to check the convergence ΠVj`

→ ΠV . Thus, (1−ΠVj`
)(xi − bj) = (1−ΠVj`

)(xi − x̂)→
(1− ΠV )(xi − x̂), which means that

n∑
i=1

‖(1− ΠVj`
)(xi − bj)‖2 →

n∑
i=1

‖(1− ΠV )(xi − x̂)‖2 = inf
(V,b)

n∑
i=1

‖(1− ΠV )(xi − b)‖2,

so that the mimium is achieved at (V, x̂).

Given this lemma, we see that the minimization problem is equivalent to minimizing with
b = x̂ fixed, and that if (V, b′) is a minimizing pair then (V, x̂) is a minimizing pair, too, since
b′ − x̂ ∈ V , and so (1) is unaffected by replacing b′ with x̂. Thus, without loss of generality,
we may assume that x̂ = 0, and focus on the minimization problem without offset, i.e. with
b = 0.

Lemma 6. The following identity holds for any k-dimensional hyperplane V :
n∑

i=1

‖(1− ΠV )xi‖2 =
n∑

i=1

‖xi‖2 − Tr(ΠV Σ).

In particular, the left-hand side is minimized when Tr(ΠV Σ) is maximized.
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Proof. First notice that

n∑
i=1

‖(1− ΠV )xi‖2 =
n∑

i=1

‖xi‖2 −
n∑

i=1

‖ΠV xi‖2,

so we only need to show that
n∑

i=1

‖ΠV x‖2 = Tr(ΠV Σ).

Let v1, . . . , vk be an orthonormal basis of V , and extend it via vk+1, . . . , vN to an orthonormal
basis of RN . Then

Tr(ΠV Σ) =
N∑
j=1

〈ΠV Σvj, vj〉 =
k∑

j=1

〈ΠV Σvj, vj〉. (3)

Now notice that by definition

Σ =
n∑

i=1

xix
T
i ,

or in more coordinate-free language

Σ =
n∑

i=1

〈xi, ·〉xi.

Thus for 1 ≤ j ≤ k,

〈ΠV Σvj, vj〉 =
n∑

i=1

〈(ΠV xi)〈xi, vj〉, vj〉 =
n∑

i=1

〈xi, vj〉〈ΠV xi, vj〉 =
n∑

i=1

|〈xi, vj〉|2.

Plugging this into (3) yields

Tr(ΠV Σ) =
n∑

i=1

k∑
j=1

|〈xi, vj〉|2.

We recognize the inner sum as ‖ΠV xi‖2. Thus

Tr(ΠV Σ) =
n∑

i=1

‖ΠV xi‖2,

which completes the proof.

The crux of the proof is now to show the following general statement in linear algebra:
let T be any positive-semidefinite N ×N matrix, with eigenvalues µ1 ≥ · · · ≥ µN ≥ 0.
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Proposition 7. The quantity Tr(ΠV T ) is maximized over k-dimensional hyperplanes V if
and only if V is the span of k orthonormal eigenvectors of T corresponding to its k largest
eigenvalues. In this case, the maximum is

∑k
j=1 µi.

Proof. Let e1, . . . , eN be an orthonormal basis of eigenvectors of T , corresponding (in order)
to the eigenvalues µ1 ≥ · · · ≥ µN of T . Let V be any k-dimensional hyperplane. Then

Tr(ΠV T ) =
N∑
j=1

〈ΠV Te1, e1〉 =
N∑
j=1

µj〈ΠV ej, ej〉 =
N∑
j=1

µj‖ΠV ej‖2. (4)

Notice that if V = span{e1, . . . , ek}, then this quantity is precisely
∑k

j=1 µj. To prove that
this is the maximum quantity, we need only bound (4). Set aj = ‖ΠV ej‖2. Then for all
1 ≤ j ≤ N , 0 ≤ aj ≤ 1. Furthermore,

∑N
j=1 aj =

∑N
j=1〈ΠV ej, ej〉 = Tr(ΠV ) = k. Thus, from

(4),

Tr(ΠV Σ) =
N∑
j=1

ajµj

=
k∑

j=1

µj +
k∑

j=1

µj(aj − 1) +
N∑

j=k+1

ajµj

≤
k∑

j=1

µj +
k∑

j=1

µk(aj − 1) +
N∑

j=k+1

ajµk (5)

=
k∑

j=1

µj + µk

N∑
j=1

aj − µk

k∑
j=1

1

=
k∑

j=1

µj + kµk − kµk =
k∑

j=1

µj.

This shows that the maximum is
∑k

j=1 µj and is achieved if V is the span of k orthonormal
eigenvectors of T corresponding to its k largest eigenvalues.

We are not quite done, since we also need to show that the maximum is attained only if
V is the span of k orthonormal eigenvectors of T corresponding to its k largest eigenvalues.
This would be true, for instance if ΠV ej = ej if j ≤ k and ΠV ej = 0 if j > k, as in this case
V = span{e1, . . . , ek}. Unfortunately, this need not be the case, because the multiplicity
of µk could be greater than 1, and hence the choice of eigenvectors may not be unique.
Instead, we will show that there is another orthonormal basis e′1, . . . , e′N (with corresponding
eigenvalues µ1 ≥ . . . µN ≥ 0) for which ΠV e

′
j = e′j if j ≤ k and ΠV e

′
j = 0 if j > k. To do so,

we will need to examine the inequality (5) more carefully. If Tr(ΠV T ) attains its maximum
value

∑k
j=1 µj at a hyerplane V , then the inequality (5) must be an equality. This means

that for j ≤ k either aj = 1 or else µj = µk and likewise for j > k either aj = 0 or else
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µj = µk. Let k1 ≤ k be the minimum index for which µk1 = µk and likewise k2 ≥ k be the
maximum index for which µk2 = µk. In other words2

µ1 ≥ · · ·µk1−1 > µk1 = · · · = µk = · · · = µk2 > µk2+1 ≥ · · ·µN ≥ 0.

Let Ek denote the eigenspace of T corresponding to µk. In other words,

Ek = span{ek1 , . . . , ek, . . . , ek2}.

Rexpressing the previous conditions on the aj, we have that aj = 1 for j < k1 and aj = 0 for
j > k2. Thus ΠV ej = ej for j < k1 and ΠV ej = 0 for j > k2. It is not difficult to check that
this means that ΠV : Ek → Ek.3 Thus ΠV |Ek

is a rank k − (k1 − 1) orthogonal projection.
In particular, we may find orthonormal vectors e′k1 , . . . , e

′
k ∈ Ek for which ΠV e

′
j = e′j for

k1 ≤ j ≤ k and ΠV e
′
j = 0 for k < j ≤ k2. Setting e′j = ej for j′ < k1 or j′ > k2, it

follows that ΠV e
′
j = ej for j ≤ k and ΠV e

′
j = 0 for j > k. Thus we have found the desired

orthonormal basis and hence completed the proof.

2Of course, k1 may equal 1 and k2 may equal N and so this expression is not completey rigorous; for
instance if k1 = 1, then it asserts that µ1 > µ1. However, it gets the point across sufficiently well.

3For instance by showing that if k1 ≤ j ≤ k2, and j′ < k1 or j′ > k2 that ΠV ej is orthogonal to ej′ .
Indeed, 〈ΠV ej , ej′〉 = 〈ej ,ΠV ej′〉 = δ〈ej , ej′〉, where δ is either 0 or 1. Either way the quantity is 0. Thus
ΠV Ek is orthogonal to the span of all eigenvectors for eigenvalues other than µk. By the spectral theorem,
this means that ΠV Ek ⊆ Ek.
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