Approximating Oscillatory Integrals and Application
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If ¢ is a phase function, and a € S’ is a symbol, then we may define the oscillatory
integral operator I(a, ) as a distribution by

(](a,go),u}z/el w0 (. 0)u(z) dado,

where the (usually non-convergent) integral is defined by integration by parts may times
using a suitable differential operator L such that L!(e*?) = e (see [1, Theorem 1.1| for
details). The purpose of this note is to prove the following:

Proposition 1.1. Let x € C(R") be 1 at 0. Let ¢ be a phase function and a € SJs a
symbol. Form the oscillatory integrals:

I(a, ) = /ei“"(x’g)a(a:,e) do

and
L(e9) = [ € Dalz,0)x(0) db.
(where this last integral actually converges). Then I. — I weakly.

Proof. We need only show that if % is sufficiently large then
/ei“a(x’g)Lk(au(l —Xe)) d0 — 0
for every u € C'°. Here, L is a differential operator of the form
L= Z a;0p; + b0, + c,
where a; € 57, bj,c € S and L'e™” = ¢'¢. Then
L* =) a,,30507,
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where a, 5 € Sllfﬂ*k. So,

LF(au(l — x.)) = Zaa”g Z C5 0% ad®uds (1 — x.).

Here the inner sum is taken over oy + as = «, 1 + P2 = . However, if we only use the
terms with ap = 0, then the sum is just L*(au)(1 — x(£6)), which is uniformly bounded by
an integrable function, in #, and hence goes to 0. For the terms s > 0,

9 (1 = x=) = €195 (x) (<0).

Thus we may estimate on supp u,

L (au(1 = xo))l S D (141675 Y (1 4 [g|)mrlertrolBalgleal,

An individual term looks like

(1 + ‘HD|a\—k+m—p|o¢1|+6|,32|€\a2\.
If we integrate this from 0 to 1, the integral is obviously bounded by an integrable function,
and so the integral goes to 0 thanks to the € terms. Over (1, 00), we may replace the bounds

of (1 + [#])" with [#]". We in fact need only to integrate up to to supy |z|: x € supp x.},
since the integrand is 0 outside this region. On this region, we have the bounds

ch—lal=m+plai|=d|Bs| |az|

The exponent is bounded below by
(1=0)k+(p— D] —m,
which is positive for large enough k. So the integral goes to 0 with . O
An application of this proposition is as follows:

Proposition 1.2. Suppose X is an open subset of R™, and f € C*°(X) with Im f >0, and
df #0if f(x) =0. For k > 0 we define

(f(z) +i0)™ = lim (f(x) +1ie) ™,

e—0t

where the limit is taken in D'(X). Then

(f(z)+ iO)_k = C’k/ @1tk g
0

where the integral is determined by taking a smooth cutoff x(7) of 0, writing 1 = x + (1 —x),
noticing that the integral with x converges, and the integral is 1 — x is an oscillatory integral
(if we extend 1 — x =0 for T <0).



Proof. Using a change of variables and the Gamma function, we see that
(f(z) +ie)™* = / ilf@)+ie)r —1+k g
0
It is clear that

/ ei(f(x)—l-is)TT—l—i-k‘X(T) dT—>/ eif(ac)TT—l—l-kX(T) dr.
0 0

To get the convergence of the other part of the integral, we will need a version of the
proposition above, but with a small parameter. The proof follows by the same argument.
Set

]:/ e @ =1k (1) dr,
0

where ¢ = (1 — x) for 7 > 0 and 0 otherwise, and
I. = /OO e (@+ie) =14k o (1) dr.
0
We need to show that I, — I. Fix 6 > 0 and consider the distribution
Js :/ @R (1)ep(67) dr,
0

where ¢(0) = 1. Also set

L :/ e @HE) =14k o (2Yah(67) dr.
0

Then
Is — I = ([E — [5’5) + (1575 — J(;) =+ (J5 — I)

We need to show that when testing against any fixed u, then is € and 4 is small enough, then
the right-hand side is small. By the proposition, we may always choose ¢ independently of ¢
to make the last term as small as we like. Treating the symbol in I, as e "7~ (1), and
observing that the first factor and all its dervatives are uniformly bounded as ¢ — 0, we may
use the proposition (with a parameter) to show that we can choose ¢ small independent of
¢ to make the first term as small as we like. Since the integrals of both terms in the middle
actually converge, and 6 has been fixed not depending on ¢, if € is small enough, it is easy
to make the middle term small, as well. O]

In turn, this latter proposition is essential in examing WF((f (z)+ic)~*) and sing supp(f (z)+
ic)™") in terms of generalities of oscillatory intergals. See [1, Exercise 7.6].
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