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1 Motivation
When as an undergraduate I first learned the inverse function theorem, I was using a textbook
of Munkres [1]. The proof presented there was not very illuminating to a young analyst,
and I never properly learned it.1 Later, when learning about PDE, an infinite-dimensional
version of the inverse function theorem was needed. However, not only was the proof I
“knew” not intuitive to me, it also depended essentially on the local compactness of Rn, and
so was useless in the infinite-dimensional setting. Later, because of a blog post by Terry Tao
[2], I learned that there was always a much easier proof, which extended readily to infinite
dimensions. So, partially for myself, I present the details of this argument.

2 Inverse Function Theorem
We will prove the following theorem

Theorem 2.1. Let U be an open set in Rn, and let f : U → Rn be continuously dif-
ferentiable. Suppose that x0 ∈ U and Df(x0) is invertible. Then there exists a smaller
neighbourhood V 3 x0 such that f is a homeomorphism onto its image. Furthermore, V
may be taken small enough so that f−1 is also continuously differentiable, with its derivative
satisfying D(f−1)y = (Df)−1f−1(y). Moreover, if f is of class Ck, (k ∈ N ∪ {∞}), then so is
f−1.

The version of the proof presented here depends on a version of the Banach fixed point
theorem with parameter, which we now state.

1I would not recommend Munkres’ book. The first half, on calculus in Euclidean space, is passable,
although the proofs of two of the most important theorems, the invese function theorem and the change
of variables theorem, are some of my least favourites in the literature. Although I dislike his proof of the
inverse function theorem (hence this note), I especially dislike the proof of the change of variables theorem
which completely hides the measure-theoretic intuition behind it. The second half on manifolds is terrible.
For whatever misguided reason, Munkres insists on working with manifolds only in Rn, which allows him to
conflate the differential structure (i.e. intrinsic) and Riemannian structure (i.e. extrinsic and coming from
the embedding into Rn) of a manifold. This conflation is maximally obfuscatory. After learning manifolds
this way, it took me a great deal effort to try to untangle the different notions and learn it properly. I would
only suggest this book if one wants a belaboured introduction to the Riemann integral in dimension > 1,
since this is the only material which I have not seen reproduced better elsewhere (although why exactly one
would want to put the effort into the intricacies of the Riemann integral is a different question).
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Theorem 2.2 (Banach Fixed Point Theorem). Let (X, d) be a complete metric space, and
T : X → X be a contraction of factor r < 1, i.e. d(Tx, Ty) ≤ rd(x, y). Then T has a unique
fixed point. Furthermore, if Λ is another metric space, and T (λ) is a continuous family of
contractions of factor r, continuous in the sense that

lim
λ→λ0

sup
x∈X

d(T (λ)x, T (λ0)x) = 0

then the fixed points of T (λ) are continuous of λ. Stated otherwise, if x(λ) is the unique
fixed point of T (λ), then the map λ 7→ x(λ) is continuous.

Proof. First we show uniqueness. If Tx = x and Ty = y, then

d(x, y) = d(Tx, Ty) ≤ rd(x, y),

which is only possible if d(x, y) = 0, i.e. x = y.
Now for existence. Fix any x0 ∈ X, and consider y = limn→∞ T

n(x0). If this exists, then

T (y) = T
(

lim
n→∞

T n(x0)
)

= lim
n→∞

T n+1(x0) = y,

since T is continuous. To prove convergence, notice that the sequence is Cauchy. Indeed, for
any n it is easy to see inductively that

d(T n(x0), T
n+1(x0)) ≤ rnd(x0, T (x0)).

By the triangle inequality, it follows that for k ≥ 1

d(T n(x0), T
n+k(x0)) ≤ d(x0, T (x0))

n+k−1∑
i=n

ri ≤ rn
d(x0, T (x0)

1− r

This upper bound is independent of k, so it follows that if n,m ≥ N , d(T n(x0), T
m(x0) ≤

rN d(x0,T (x0)
1−r , which shows that the sequence is Cauchy.

Now for the version with parameter. Observe that

d(x(λ), x(λ0)) = d(T (λ)x(λ), T (λ0)x(λ0))

≤ d(T (λ)x(λ), T (λ)x(λ0)) + d(T (λ)x(λ0), T (λ0)x(λ0)

≤ rd(x(λ), x(λ0)) + d(T (λ)(x(λ0)), T (λ0)(x(λ0))).

Rearranging,
d(x(λ), x(λ0)) ≤ (1− r)−1d(T (λ)x(λ0), T (λ0)x(λ0)→ 0

as λ→ λ0 by continuity of the map λ 7→ T (λ).

Now we prove the inverse function theorem.
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Proof. Translating and multiplying by a linear map, we may assume that x0 = 0, f(x0) = 0
and Df0 = Id. Since f is continuously differentiable, Dfx remains close to Df0 as matrices
if x is close to 0. For y ∈ Rn, with y close to 0, consider the map Ty : x 7→ x − f(x) + y.
Observe that a fixed point x of Ty is precisely an x for which f(x) = y.2

Let BR denote the closed ball of radius R > 0 centred at 0. BR is in particular a complete
metric space. We will prove that if R is small enough, and y is small enough, Ty maps BR

to itself and is a contraction. We will use ‖x‖ to denote the usual (`2) Euclidean norm on
points, and for a linear map A, ‖A‖ to denote the `2 operator norm.

Let us start by considering the map F (x) = f(x) − x. F is continuously differentiable
with DF0 = 0. Then for R > 0 small enough to that BR ⊆ U , and any two x, x′ ∈ BR,

‖F (x)− F (x′)‖ =

∥∥∥∥∫ 1

0

DF(x−x′)t+x′ · (x− x′) dt
∥∥∥∥

≤
∫ 1

0

‖DF(x−x′)t+x′‖‖x− x′‖ dt

≤
(

sup
z∈BR

‖DFz‖
)
‖x− x′‖.

Since DF0 = 0 and F is continuously differentiable, for all 0 < ε < 1, if R is small
enough,

(
supz∈BR

‖DFz‖
)
≤ ε. Fix such an ε.

Suppose ‖y‖ ≤ R(1− ε). Then we will show Ty : BR → BR and is a contraction.
Fix x ∈ BR. Then we compute

‖Ty(x)‖ = ‖x− f(x) + y‖ ≤ ‖F (x)‖+ ‖y‖
= ‖F (x)− F (0)‖+ ‖y‖
≤ ε‖x‖+R(1− ε) ≤ R.

2Let us motivate the choice of this map. Let us use the notation F (x) = f(x) − x of the sequel. Since
Df0 = Id, F (x) ∈ o(1) can be thought of as a perturbation of the constant map 0, and hence f = id− F is
a peturbation of the identity. We are seeking to solve f(x) = y, i.e. (id− F )(x) = y. One way to motivate
the choice of the map Ty is to rearrange this equality into id(x) = F (x) + y = Ty(x), i.e. finding a fixed
point for Ty. A more brute force approach, however, is to try to build a sequence of approximate solutions
xn to this equation, starting with x1 = y, and iteratively improving the error. Explicitly, we may think of
F (xn)+y = xn+Rn, where Rn is some error. To improve the error, we try to perturb by adding some z of size
roughly Rn to xn, and trying to solve F (xn+z)+y = xn+z. For such z, F (xn+z) = F (xn)+DFxnz+o(|z|)
by definition of the derivative, and so we are trying to solve F (xn) + y + DFxn

z + o(|z|) = xn + z, i.e.
Rn+DFxn

z+o(|z|) = z. Since xn should be thought of as close to 0, DFxn
is small, and thus DFxn

z+o(|z|)
should be thought of as neglible compared to Rn if z is about size Rn. Thus z = Rn is of size Rn and solves
the previous equation modulo an error of Rn+1 = DFxnRn + o(|Rn|), which is of smaller order than Rn.
Thus xn+1 := xn + z solves F (xn+1) + y = xn+1 +Rn+1, and Rn+1 is an improved error compared to Rn.
While this idea can be turned into a formal proof, one should just notice that xn+1 = xn+ z = xn+Rn =

F (xn) + y = Ty(xn) is just a fixed-point iteration, and so the formalization of this proof may be abstracted
away to an invokation of the fixed point theorem, anyway. The reader should also notice the similary of this
approach to inverting the linear operator Id − F on a Banach space, if ‖F‖ < 1, via the Neumann series∑∞

k=0 F
k; in this case, the choice of xn above are precisely the partial sums of the Neumann series, truncated

at k = 2n−1, applied to y.
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Thus Ty : BR → BR.
Now for the contraction. Fix x, x′ ∈ BR. Then we compute

‖Ty(x)− Ty(x′)‖ ≤ ‖F (x)− F (x′)‖ ≤ ε‖x− x′‖.

By the fixed point theorem, Ty has a unique fixed point x ∈ BR, i.e. if ‖y‖ is small enough,
there exists a unique solution x to f(x) = y with x ∈ BR. In other words, we have established
the existence of f−1 : BR(1−ε) → BR.

We still need to prove that f is a homeomorphism. In finite dimensions, we can appeal
to the fact that a continuous bijection between compact subsets of Rn is a homeomorphism.
The main purpose of this note is to show that we do not need the assumption of finite
dimensions, so we will use the version of the fixed point theorem with parameter. So, we
just need to prove that f−1 is continuous, i.e. the fixed points of Ty are continuous in y. By
the fixed point theorem, we just need to show that the map y → Ty is continuous, since they
all have the same contractive factor ε. We easily compute for y, y0 ∈ BR(1−ε).

sup
x∈BR

‖Tyx− Ty0x‖ = ‖y − y0‖,

which certainly tends to 0 as y → y0. Thus f−1 is continuous. If 0 ∈ V ⊆ BR is open, then
restricting f to U , it follows that f is a homeomorphism onto its image, which we will cal
W . This completes the first part of the theorem

Now we need to show that f−1 is continuously differentiable. Shrinking V if necessary,
we may assume that Dfx is nonsingular on V . Now we show that f−1 : W → V (which we
know to be a homeomorphism) is differentiable on W , with derivative (Df)−1f−1(y). Since Df
is non-singular and f−1 is continuous, this automatically shows that (Df)−1f−1(y) is continuous,
and hence f−1 is continuously differentiable. Fix y0 ∈ W , and write x0 = f−1(y0), and for
any y ∈ W write x = f−1(y). Then since f is a homeomorphism

lim
y→y0

f−1(y)− f−1(y0)− (Df)−1f−1(y0)
(y − y0)

‖y − y0‖

= lim
x→x0

x− x0 − (Df)−1x0 (f(x)− f(x0))

‖f(x)− f(x0)‖

= lim
x→x0

−Df−1x0

(
f(x)− f(x0)−Dfx0(x− x0)

‖x− x0‖

)
‖x− x0‖

‖f(x)− f(x0)‖

SinceDf−1x0 is a linear map, it is continuous, and so the first factor converges to 0 by definition
of differentiability. The second factor is bounded above as x→ x0. Indeed,

lim inf
x→x0

‖f(x)− f(x0)‖
‖x− x0‖

≥ lim inf
x→x0

∣∣∣∣‖Dfx0(x− x0)‖‖x− x0‖
− ‖f(x)− f(x0)−Dfx0(x− x0)‖

‖x− x0‖

∣∣∣∣
= lim inf

x→x0

‖Dfx0(x− x0)‖
‖x− x0‖

≥ c > 0,
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since Dfx0 invertible means that there is some c > 0 for which ‖Dfx0(x− x0)‖ ≥ c‖x− x0‖.
Putting these two things together means that

lim
y→y0

f−1(y)− f−1(y0)− (Df)−1f−1(y0)
(y − y0)

‖y − y0‖
= 0,

i.e. f−1 is differentiable at y0 with the desired derivative.

Lastly, we show that if f is Ck on V , then f−1 is Ck on W , without the need to shrink V .
Because we do not shrink V , if we can show this is true for k < ∞, we automatically show
it’s true for k = ∞. First, observe that GL(n,R) is an open subset of Mn(R) ∼= Rn2 , and
that the inversion map I : GL(n,R) → GL(n,R) is of class C∞ (since it is just a rational
function of the entries). If f is of class Ck, then the map Df : V → GL(n,R) is of class
Ck−1. Now, from the above, D(f−1) : W → GL(n,R) is just

D(f−1) = I ◦Df ◦ f−1,

i.e. is the composition of three maps, the first of which is C∞, and the second of which is
Ck−1. This argument shows that that if f−1 is of class Cr for r < k, then D(f−1) is of class
Cr, too, so that f−1 is of class Cr+1. Starting with the case r = 1, which we know to be
true, we obtain iteratively that f−1 is of class Ck, too.

Remark 2.3. As mentioned in the motivation section, this proof easily extends to infinite
dimensions, with the derivative replaced by the Fréchet derivative. Indeed, the only thing
which needs changing is Rn to whichever Banach space X is in question, and changing the
norms to the norms in the Banach spaces. The last part about f−1 inheriting the regularity
of f does not quite carry through, but this is alright for the purpose of this note, since anyway
it is not clear what it means for a map to be k times continuously Fréchet differentiable.

References
[1] James R Munkres, Analysis on Manifolds

[2] Terence Tao, The inverse function theorem for everywhere differentiable maps. https://terrytao.
wordpress.com/2011/09/12/the-inverse-function-theorem-for-everywhere-differentiable-maps/

5

https://terrytao.wordpress.com/2011/09/12/the-inverse-function-theorem-for-everywhere-differentiable-maps/
https://terrytao.wordpress.com/2011/09/12/the-inverse-function-theorem-for-everywhere-differentiable-maps/

	Motivation
	Inverse Function Theorem

