
Fourier Transform of Homogeneous Radial Distributions

Ethan Y. Jaffe

The purpose of this note is to prove the following theorem, and then its one-dimensional
analogue:

Theorem 1. Let d ≥ 2, and consider the function on Rd defined by |x|a for −d < a < 0.
Then |x|a exists as a tempered distribution and has Fourier transform Cd,a|ξ|−d−a, where

Cd,a = (2π)d/22a+d/2Γ

(
a+ d

2

)(
Γ
(
−a

2

))−1
> 0.
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We will use the following convention on the Fourier transform:

û(ξ) =

∫
e−ix·ξu(x) dx.

Proof. Since −d < a, |x|a ∈ L1
loc(R

d) and hence is a tempered distribution. We now develop
part of the theory of homogeneous radial distributions.

Definition 2. We will call a distribution u ∈ D′(Rd \{0}) (resp. u ∈ S ′(Rd))) homogeneous
of order a if for all ϕ ∈ C∞c (Rd \ {0}) (resp. ϕ ∈ S(Rd)))

〈u, ϕ〉 = td+a〈u, ϕt〉,

where ϕt(x) = ϕ(tx). If u ∈ D′(Rd) and the above is true for all ϕ ∈ C∞c (Rd), then we say
that u is homogeneous or order a on Rd.

This definiton is set up so that homogeneous functions of order a are homogeneous
distributinos of the same order. Differentiating with respect to t (and verifying the the
formal computation is valid) yields that this is equivalent to the Euler homogeneity relation
(c.f. [1, §3.2]):

(a+ d)〈u, ϕ〉+ 〈u, r∂rϕ〉 = 0.

Here r∂r =
∑
xj∂xj = x · ∇ is the radial vector field. Observing that the formal adjoint of

r∂r is −r∂r − d, it follows that the previous display is equivalent to

r∂ru = au. (1)
1Please see my other note where I consider the same theorem for all a. By meromorphic continuous,

this holds for all a 6∈ Z relatively easily. The other note is more complicated since the cases a ∈ Z involve
significant difficulty.
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Definition 3. We will call a distribution u ∈ D′(Rd \ {0}) radial if

〈u, ϕ〉 = 〈u, ϕ ◦ T 〉,

whenever T ∈ SO(d) is a rotation.

We now give a useful property of radial distributions.

Lemma 4. If u ∈ D′(Rd \ {0}) is radial then Lu = 0 for every vector field L such that Lx
is tangent the sphere of radius |x|.

Proof. Let ηε be a system of radial mollifiers. Then u ∗ ηε is radial as a distribution. Indeed,
one checks that and so for any T ∈ SO(d),

(ϕ ◦ T ) ∗ (η̆ε ◦ T ) = (ϕ ∗ η̆ε) ◦ T.

Thus,
〈u, ϕ ◦ T ∗ η̆ε〉 = 〈u, (ϕ ∗ η̆ε) ◦ T 〉 = 〈u, ϕ ∗ η̆ε〉.

So u ∗ ηε is radial. Changing variables then gives that
∫

((u ∗ ηε) ◦ T−1)ϕ =
∫
u ∗ ηεϕ, and

thus u ∗ ηε is radial as a function. In particular L(u ∗ ηε) = 0 for any tangent vector field L.
Taking ε→ 0 proves the lemma.

We now state a proposition involving the Fourier transforms of homogeneous and radial
distributions.

Proposition 5. Suppose u ∈ S ′(Rd) is homogeneous of order a, then û. homogeneous of
order −d− a. Similarly, if u, considered as a distsribution in D′(Rd \ {0}) is radial, then so
is û.

Proof. One only needs to know that for ϕ ∈ S ′(Rd), ϕ̂t(ξ) = t−dϕ̂1/t(ξ) and ϕ̂ ◦ T = ϕ̂ ◦ T
for T ∈ SO(n). Then the proof is just an exercise in definitions.

We can now show that the Fourier transform of |x|a is Cd,a|ξ|−d−a, for some constant Cd,a.
|x|a is homogeneous of order a and radial, and thus its Fourier transform is homogeneous of
order b = −d − a and radial. We show that the only such functions are multiples of |x|b,
which will show the first part of the theorem. Let u ∈ S ′(Rd) be a radial distribution which
is homogeneous of order b when considered as a distribution on Rd \ {0}. Then v = |x|−bu
is radial and homogeneous of order 0 (notice that |x|−b is smooth on Rd \ {0}). Thus by
(1) ∂rv = 0. However, if L is any vector field tangent to spheres, then Lv = 0 too. Since
any vetor field on Rd \ {0} decomposes into a multiple of ∂r and a vector field tangent to
all circles, we deduce that Lv = 0 for any vector field V . It follows immediately that v is
constant, i.e. u = C|x|b, at least on R \ {0}. In other words, supp(u− C|x|b) ⊆ {0}. Thus
u − C|x|b is a sum of δ functions and their derivatives. But such a function, if it is to be
homogeneous, is homogeneous of order at most −d, or else is 0. Thus u−C|x|b ≡ 0. Indeed,
the Fourier transform of any sums of δ and its derivatives is a polynomial. If it is to be
homogeneous, it is either 0 or a homogeneous polynomial of degree at least 0, i.e. the sum
of δ themselves is either 0 or homogeneous or order at most −d, by the above proposition.
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Next we determine Ca,d. Let G(x) = e−|x|
2/2 be a standard Gaussian. Then Ĝ(ξ) =

(2π)n/2e−|ξ|
2/2. Thus,∫

Rd

|x|ae−|x|2/2 dx = Cd,a(2π)−d/2
∫
Rd

|ξ|−d−ae−|x|2/2 dξ.

The left-hand side is, by a change of variables,

ωd−1

∫ ∞
0

ra+d−1e−r
2/2 dr = ωd−12

(a+d)/2−1Γ

(
a+ d

2

)
,

where ωd−1 denotes the surface area of the unit d− 1 sphere. Similarly, the right-hand side
is

Cd,aωd−1(2π)−d/22−a/2−1Γ
(
−a

2

)
.

Thus,

Cd,a = (2π)d/22a+d/2Γ

(
a+ d

2

)(
Γ
(
−a

2

))−1
> 0,

where the positivity follows since both arguments of the Γ function are real and positive. If a
is not a negative integer, we can write this in another way. Observe that since Γ(t+1) = tΓ(t),

Γ

(
a+ d

2

)
= 2−d−1

(
d−1∏
k=1

(a+ d− k)

)
Γ(a/2 + 1/2).

Next, observe that by duplication,

Γ(a/2 + 1/2) = 2−a
√
π

Γ(a+ 1)

Γ(a/2 + 1)
.

Finally, notice that by the reflection formula

Γ(a/2 + 1)Γ(−a/2) = − π

sin(πa/2)
.

Putting it all together,

Cd,a = −2π(d−1)/2 sin(πa/2)Γ(a+ 1)
d−1∏
k=1

(a+ d− k).

Now we turn to the one-dimensional case. In one dimension, R\{0} is not connected, and
the notion of a “radial” distribution does not make sense. However, there are no directions
tangent to a sphere. So we can follow the proof above and deduce that if u is a homogeneous
distribution of order a for−1 < a < 0, then u is a multiple of |x|a, perhaps a different multiple
on the positive and negative axes. If furthermore u is a real-valued even distribution (i.e. one
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which restricts to a distribution for real-valued functions and is even in the obvious sense),
then so is its Fourier transform. We deduce that if u = |x|a, then û = C1,a|ξ|−1−a, where we
can compute C1,a as above (the product is just empty). One can also compute the Fourier
transform of distributions such that v = χx>0|x|a = xa+, which is aso homogeneous or order
a. Indeed, v(x)+v(−x) = |x|a, and v(x)−v(−x) = |x|a sgn(x). The Fourier transform of the
former is v̂(ξ) + v̂(−ξ) = C1,a|x|a. Since |x|a sgn(x) is odd and real-valued, so is its Fourier
transform. Thus its Fourier transform is of the form C ′a|ξ|−1−a sgn(ξ) for some constant C ′a.
One can compute C ′a in a similar way to computing Cd,a, except one uses H(x) = xe−x

2/2

instead of G(x) = e−x
2/2. Thus, v̂(ξ) − v̂(−ξ) = C ′a|ξ|−1−a sgn(ξ). This gives a system of 2

equations with two unknowns v̂(ξ) and v̂(−ξ), which can then be solved for. We leave it as
an exercise to the reader to determine exactly what C ′a, and v̂(ξ) are.
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