Fourier Transform of Homogeneous Radial Distributions

Ethan Y. Jaffe

The purpose of this note is to prove the following theorem, and then its one-dimensional
analogue:

Theorem 1. Let d > 2, and consider the function on R¢ defined by |z|* for —d < a < 0.
Then |x|* exists as a tempered distribution and has Fourier transform Cgo|&|~%¢, where

Cau=Cmyrer (1) (1 (-5)) " >0

We will use the following convention on the Fourier transform:
w(€) = /e_m'gu(x) dx.

Proof. Since —d < a, |z|* € L} _(R?) and hence is a tempered distribution. We now develop

loc
part of the theory of homogeneous radial distributions.

Definition 2. We will call a distribution u € D'(R%\ {0}) (resp. u € S'(R%))) homogeneous
of order a if for all p € C®(R?\ {0}) (resp. ¢ € S(RY)))

<u7 90> = td+a<u7 g0t>,

where o;(7) = p(tz). If u € D'(R?) and the above is true for all ¢ € C°(R?), then we say
that u is homogeneous or order a on R%.

This definiton is set up so that homogeneous functions of order a are homogeneous
distributinos of the same order. Differentiating with respect to t (and verifying the the
formal computation is valid) yields that this is equivalent to the Euler homogeneity relation
(c.f. 1, §3.2]):

(a+ d)(u, ) + (u,rd.p) = 0.

Here 70, = ) x;0,, = x - V is the radial vector field. Observing that the formal adjoint of
ro, is —r0, — d, it follows that the previous display is equivalent to
royu = au. (1)

!Please see my other note where I consider the same theorem for all . By meromorphic continuous,
this holds for all a € Z relatively easily. The other note is more complicated since the cases a € Z involve
significant difficulty.




Definition 3. We will call a distribution u € D'(R®\ {0}) radial if

(u, ) = (u, 00 T),
whenever 7' € SO(d) is a rotation.

We now give a useful property of radial distributions.

Lemma 4. If u € D'(R?\ {0}) is radial then Lu = 0 for every vector field L such that L,
is tangent the sphere of radius |z|.

Proof. Let n. be a system of radial mollifiers. Then w * 7. is radial as a distribution. Indeed,
one checks that and so for any 7" € SO(d),

(poT)*(1.oT) = (pxn:)oT.

Thus,
(u, po T 1) = (u, (p* 1) o T) = (u, o *1J;).
So u 1. is radial. Changing variables then gives that [((u=*n.) o T ') = [wu*n.p, and

thus u * 7). is radial as a function. In particular L(u *7n.) = 0 for any tangent vector field L.
Taking ¢ — 0 proves the lemma. O]

We now state a proposition involving the Fourier transforms of homogeneous and radial
distributions.

Proposition 5. Suppose u € S'(R?) is homogeneous of order a, then 4. homogeneous of
order —d — a. Similarly, if u, considered as a distsribution in D'(R?\ {0}) is radial, then so
18 U.

Proof. One only needs to know that for ¢ € S'(R?), $4(&) = t7%p1,:(£) and ool =¢oT
for 7€ SO(n). Then the proof is just an exercise in definitions. O

We can now show that the Fourier transform of |x|® is Cy,|&|7%7¢, for some constant Cy,.
|z|* is homogeneous of order a and radial, and thus its Fourier transform is homogeneous of
order b = —d — a and radial. We show that the only such functions are multiples of |z|°,
which will show the first part of the theorem. Let u € §'(R¢) be a radial distribution which
is homogeneous of order b when considered as a distribution on R\ {0}. Then v = |z|~u
is radial and homogeneous of order 0 (notice that |z|™ is smooth on R\ {0}). Thus by
(1) 0,v = 0. However, if L is any vector field tangent to spheres, then Lv = 0 too. Since
any vetor field on R?\ {0} decomposes into a multiple of 9, and a vector field tangent to
all circles, we deduce that Lv = 0 for any vector field V. It follows immediately that v is
constant, i.e. u = C|z|’, at least on R\ {0}. In other words, supp(u — C|z|*) € {0}. Thus
u — C|z|’ is a sum of § functions and their derivatives. But such a function, if it is to be
homogeneous, is homogeneous of order at most —d, or else is 0. Thus u— C|z|* = 0. Indeed,
the Fourier transform of any sums of 0 and its derivatives is a polynomial. If it is to be
homogeneous, it is either 0 or a homogeneous polynomial of degree at least 0, i.e. the sum
of § themselves is either 0 or homogeneous or order at most —d, by the above proposition.

2



Next we determine C,4. Let G(z) = e 1*’/2 be a standard Gaussian. Then G(£) =
(2m)"/2e~ €772 Thus,

/ )%™ P2 dy = Cyo(2m) 72 / |74 ee 1ol g,
R4 R4

The left-hand side is, by a change of variables,

" /OO Ta+d—1€—r2/2 dr = wd_12(a+d)/2—11—\ <Cl ‘; d) ’
0

where wy_1 denotes the surface area of the unit d — 1 sphere. Similarly, the right-hand side
is Cd,awdfl(QW)_d/22_a/2_1F <_g> _
Thus,
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where the positivity follows since both arguments of the I' function are real and positive. If a
is not a negative integer, we can write this in another way. Observe that since I'(t+1) = tI'(¢),

r (a ; d) — 2! (;H(a +d— k)) [(a/2 +1/2).

Next, observe that by duplication,

Oy = (2m)0/290+4/2T (a + d> (F <_E>)1 >0,

a+1
[(a/2+1/2) =27 /Tt (;/2+))
Finally, notice that by the reflection formula
T(a/2 + )I(—a/2) = —m.
Putting it all together,
d—1
Cia = =21V 2 sin(ra/2)T (a + 1) H(a +d—k).
k=1

]

Now we turn to the one-dimensional case. In one dimension, R\ {0} is not connected, and
the notion of a “radial” distribution does not make sense. However, there are no directions
tangent to a sphere. So we can follow the proof above and deduce that if u is a homogeneous
distribution of order a for —1 < a < 0, then w is a multiple of |z|*, perhaps a different multiple
on the positive and negative axes. If furthermore u is a real-valued even distribution (i.e. one
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which restricts to a distribution for real-valued functions and is even in the obvious sense),
then so is its Fourier transform. We deduce that if u = |z|%, then 4 = C} ,|¢|'7%, where we
can compute C} , as above (the product is just empty). One can also compute the Fourier
transform of distributions such that v = x,>0|2|* = 2%, which is aso homogeneous or order
a. Indeed, v(z)+v(—z) = |z|?, and v(z) —v(—x) = |z|*sgn(x). The Fourier transform of the
former is 0(§) + (=€) = Cy4]x|* Since |z|*sgn(x) is odd and real-valued, so is its Fourier
transform. Thus its Fourier transform is of the form C”|¢|7'7%sgn(&) for some constant C.
One can compute C! in a similar way to computing Cy,, except one uses H(z) = ze /2
instead of G(z) = e **/2. Thus, 9(£) — 0(—=€) = C"|€|71"*sgn(€). This gives a system of 2
equations with two unknowns o(§) and v(—¢), which can then be solved for. We leave it as
an exercise to the reader to determine exactly what C?, and v(§) are.
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